If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2=4b+24
We move all terms to the left:
7b^2-(4b+24)=0
We get rid of parentheses
7b^2-4b-24=0
a = 7; b = -4; c = -24;
Δ = b2-4ac
Δ = -42-4·7·(-24)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{43}}{2*7}=\frac{4-4\sqrt{43}}{14} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{43}}{2*7}=\frac{4+4\sqrt{43}}{14} $
| 0.006^2+0.6^2=x^2 | | 7(8x+4)=3(4x+5)+233 | | 5(3x-6)-4x+7=10 | | 6.6=0.006x^2+0.6x | | 6(3x-6)=-126 | | H=0.006x^2+0.6x | | -1-(2)/(7)v=2 | | -1-2/7v=23 | | (-3/8)x=(12/27) | | 0=0.04x^2-8.504x+25302 | | w/2-9=4 | | 3x=-8x-44 | | 5x=94.3+3x | | 3x=3.5x+1 | | m=-7m+40 | | 64-5x=16 | | a3-3a2-5a+1=0 | | (h-1)=(h-1) | | 7x-45=10 | | (11x-2)=6x+13 | | -7x=-64 | | 5x+3(x8)=12x+24-4x | | -8=9(x-3)-5x | | 16-7/5x=4 | | 4y+6+3y=7(y+6) | | 5x-24+8x+9=90 | | (5x+12)–(2x–3)= | | (5x+12)–(2x–3)=3x+9 | | 7x-25=0 | | -11+11(6r-4)=44+10r | | -x/3=-1/5 | | 3*2x-7=5x+17+x |